
2

Learning Objectives

After studying this chapter, you should be able to:

- **LO1** Summarize the payback rule and some of its shortcomings.
- LO2 Discuss accounting rates of return and some of the problems with them.
- LO3 Explain the internal rate of return criterion and its associated strengths and weaknesses.
- LO4 Evaluate proposed investments by using the net present value criterion.
- LO5 Apply the modified internal rate of return.
- LO6 Calculate the profitability index and understand its relation to net present value.

8-2

Capital Budgeting

- · Analysis of potential projects
- · Long-term decisions
- Large expenditures
- Difficult/impossible to reverse
- · Determines firm's strategic direction

Good Decision Criteria

- · All cash flows considered?
- · TVM considered?
- · Risk-adjusted?
- · Ability to rank projects?
- · Indicates added value to the firm?

Net Present Value

How much value is created from undertaking an investment?

- Step 1: Estimate the expected future cash flows.
- Step 2: Estimate the required return for projects of this risk level.
- Step 3: Find the present value of the cash flows and subtract the initial investment to arrive at the Net Present Value.

8-4

Net Present Value Sum of the PVs of all cash flows

$$NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+R)^t}$$
NOTE: t=0

Initial cost often is CF₀ and is an outflow.

NPV =
$$\sum_{t=1}^{n} \frac{CF_t}{(1+R)^t} - CF_0$$

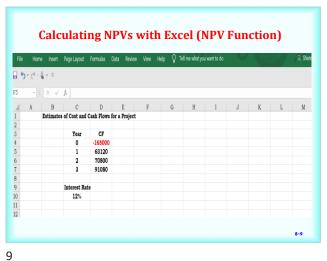
6

NPV - Decision Rule

- If NPV is positive, accept the project
- **NPV** > **0** means:
 - Project is expected to add value to the firm
 - Will increase the wealth of the owners
- NPV is a direct measure of how well this project will meet the goal of increasing shareholder wealth.

Sample Project Data

- You are looking at a new project and have estimated the following cash flows:
 - Year 0: CF = -165,000
 - Year 1: CF = 63,120
 - Year 2: CF = 70,800
 - Year 3: CF = 91,080
- Your required return for assets of this risk is 12%.
- · We will use this same data later on.


Computing NPV for the Project

• Using the formula: NPV = $\sum_{t=0}^{n} \frac{CF_t}{(1+R)^t}$

Canital Budgeting Project

 $\begin{aligned} &\text{NPV} = \text{-}165,\!000/(1.12)^0 + 63,\!120/(1.12)^1 + \\ &70,\!800/(1.12)^2 + 91,\!080/(1.12)^3 = 12,\!627.41 \end{aligned}$

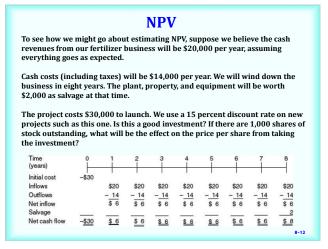
Capitai	buugening i roje	J.L	INI V
		Required Return =	12%
Year	CF	Formula	Disc CFs
0	(165,000.00)	=(-165000)/(1.12)^0 =	(165,000.00)
1	63,120.00	=(63120)/(1.12)^1 =	56,357.14
2	70,800.00	=(70800)/(1.12)^2 =	56,441.33
3	91,080.00	=(91080)/(1.12)^3 =	64,828.94
			12,627.41

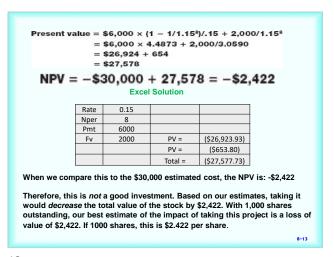
Calculating NPVs with Excel Review

- NPV function: =NPV(rate,CF01:CFnn)
 - First parameter = required return entered as a decimal (5% = .05)
 - Second parameter = range of cash flows beginning with year 1
- After computing NPV, subtract the initial investment (CF0)

	A	В	С	D
2		-	Required Return =	12%
3	Year	CF	Formula	Disc CFs
4	0	(165,000.00)	=(-165000)/(1.12)^0 =	(165,000.00)
5	1	63,120.00	=(63120)/(1.12)^1 =	56,357.14
6	2	70,800.00	=(70800)/(1.12)^2 =	56,441.33
7	3	91,080.00	=(91080)/(1.12)^3 =	64,828.94
8			•	12,627.41
9	1			
10		EXCEL	=NPV(D2,B5:B7)	177,627.41
11			NPV + CF0	12,627.41

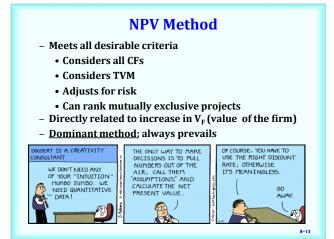
10


Net Present Value (in Excel) Sum of the PVs of all cash flows.

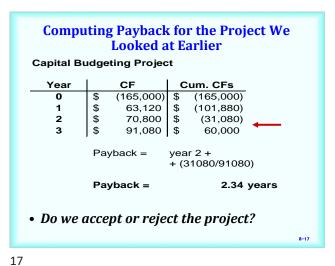

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+R)^t} - CF_0$$

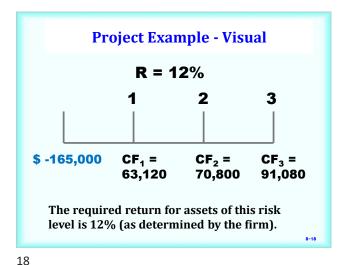
• NPV = PV inflows - Cost

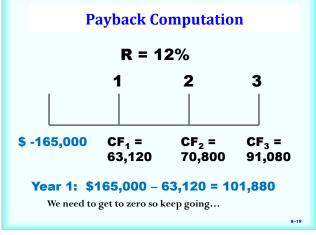
NPV=0 → Project's inflows are "exactly sufficient to repay the invested capital and provide the required rate of return"

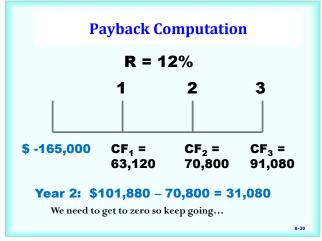

- · NPV = net gain in shareholder wealth
- Rule: Accept project if NPV > 0

	A	В	С	D	E	F	G	Н
1								
2		Using a	spreadsheet	to calcula	ate net pre	sent values		
3								
4	From Example 8.1,	he project	's cost is \$10,	000. The c	ash flows a	are \$2,000 per	year for th	e first two
5	years, \$4,000 per y	ear for the	next two, an	d \$5,000 i	n the last	year. The disc	count rate	is
6	10 percent; what's	the NPV?						
7								
8		Year	Cash flow					
9		0	-\$10,000	Discour	nt rate =	10%		
10		1	2,000					
11		2	2,000		NPV =	\$2,102.72	(wrong a	nswer)
12		3	4,000		NPV =	\$2,312.99	(right ans	swer)
13		4	4,000					
14		5	5,000					
15								
16	The formula entere	d in cell F	11 is = NPV(F	9,C9:C14). This give	s the wrong	answer be	cause th
17	NPV function actua	lly calcula	ites present v	alues, not	net prese	nt values.		
18								
19	The formula entered	in cell F12	is = NPV(F9,	C10:C14) +	C9. This g	ives the right	answer be	cause the
20	NPV function is use	d to calcu	late the prese	ent value o	of the cash	flows and th	en the initi	al cost is
21	subtracted to calcu	late the ar	nswer. Notice	that we a	dded cell (29 because it	is already	negative

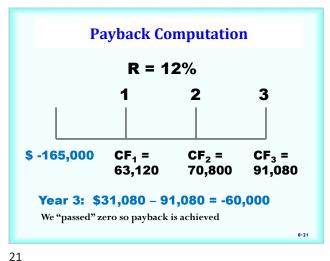

13 14




Payback Period


- Definition: How long does it take to get the initial cost back in a nominal sense?
- Computation:
 - 1. Estimate the cash flows
 - 2. Subtract the future cash flows from the initial cost until the initial investment has been recovered
- · A "break-even" type measure
- Decision Rule Accept if the payback period is less than some preset limit

15



22

Analyzing the Rule

- When compared to the NPV rule, the payback period rule has some rather severe shortcomings.
 - First, the payback period is calculated by simply adding up the future
 - There is no discounting involved, so the time value of money is completely ignored.
 - The payback rule also fails to consider risk differences.
 - The payback would be calculated the same way for both very risky and very safe projects.
- Perhaps the biggest problem with the payback period rule is coming up with the right cutoff period, because we don't really have an objective basis for choosing a particular number.
- Put another way, there is no economic rationale for looking at payback in the first place, so we have no guide as to how to pick the cutoff. As a result, we end up using a number that is arbitrarily chosen.

Payback Decision

- We need to know a "management's number. What does the firm use for the evaluation of its projects when they use payback?
- Most companies use either 3 or 4 years.
- Let's use 4 in our numerical example
 - Our computed payback was 3 years
 - The firm's uses 4 years as it's criteria, so...
 - YES, we Accept this project as we recover our cost of the project early.

Calculating Payback One More Time

The projected cash flows from a proposed investment are:

Year	Cash Flow
1	\$100
2	200
3	500

- · This project costs \$500. What is the payback period for this investment?
- The initial cost is \$500. After the first two years, the cash flows total \$300.
- After the third year, the total cash flow is \$800, so the project pays back sometime between the end of year 2 and the end of year 3.
- Since the accumulated cash flows for the first two years are \$300, we need to recover \$200 in the third year
- The third-year cash flow is \$500, so we will have to wait 200/500 = .40years to do this.

 The payback period is thus 2.4 years, or about two years and five months.

23

6

26

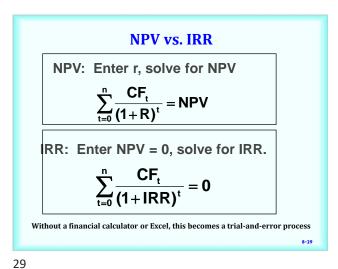
Long and Short Suppose again that we require a 15 percent return on this type of investment. We can calculate the NPV for these two investments as: $\frac{\text{New } \text{ long} \text{ short}}{0 \text{ long} \text{ short}}$ $\frac{1}{2} \text{ long} \text{ long} \text{ short}$ $\frac{1}{2} \text{ long} \text{ long} \text{ short}$ $\frac{1}{2} \text{ long} \text{ long} \text{ long}$ Now we have a problem. The NPV of the shorter-term investment is actually negative, meaning that taking it diminishes the value of the shareholders' equity. The opposite is true for the longer-term investment—it increases share value. $\text{NPV(Short)} = -\$250 + 100/1.15 + 200/1.15^2 = -\11.81 $\text{NPV(Long)} = -\$250 + 100 \times (1 - 1/1.15^4)/.15 = \35.50

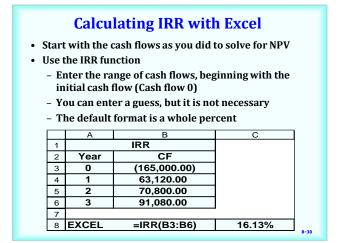
Decision Criteria Test - Payback

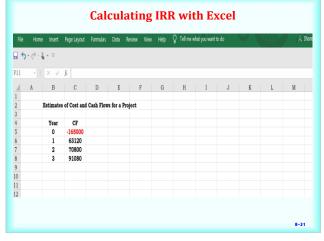
- 1. Does the payback rule account for the time value of money?
- 2. Does the payback rule account for the risk of the cash flows?
- 3. Does the payback rule provide an indication about the increase in value?
- 4. Should we consider the payback rule for our primary decision rule?

8-26

25

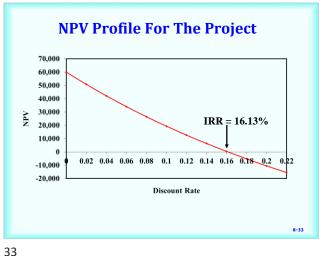

Decision Criteria Test - Payback Q: So if Payback is not that great as a capital budgeting technique, why use it? eas A: Because it is so easy to compute! Advantages and Disadvantages of the Payback Period Rule **Advantages** Disadvantages 1. Easy to understand. 1. Ignores the time value of money. 2. Adjusts for uncertainty of later cash flows. 2. Requires an arbitrary cutoff point. 3. Biased toward liquidity. 3. Ignores cash flows beyond the cutoff date. 4. Biased against long-term projects, such as research and development, and new projects.


Internal Rate of Return


- · Most important alternative to NPV
- · Widely used in practice
- · Intuitively appealing
- · Based entirely on the estimated cash flows
- · Independent of interest rates
- Definition:
 - IRR = discount rate that makes the NPV = 0
- Decision Rule:
 - Accept the project if the IRR is greater than the required return

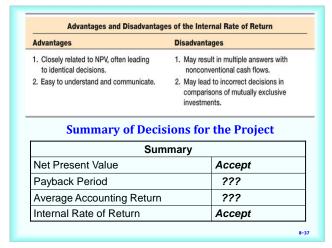
8-28

27 28



	A	В	C	D	E	F	G	Н
1								
2	1	Using a sprea	adsheet to ca	lculate	internal rat	es of retur	n	
3								
4	Suppose we have a	four-year pro	ject that costs	\$500. 7	The cash flo	ws over the	four-year	life will b
5	\$100, \$200, \$300, an	nd \$400. What	is the IRR?					
6								
7		Year	Cash flow					
8		0	-\$500					
9		1	100		IRR =	27.3%		
10		2	200					
11		3	300					
12		4	400					
13								
14								
15	The formula entered	in cell F9 is =	IRR(C8:C12).	Notice t	hat the Year	0 cash flow	has a neg	ative sig
16	representing the ini	itial cost of th	e project.					
17								

34


Decision Criteria Test - IRR

- Does the IRR rule:
 - Account for the time value of money?
 - Account for the risk of the cash flows?
 - Provide an indication about the increase in
 - Permit project ranking?
- Should we consider the IRR rule for our primary decision criteria?

IRR - Advantages

- Preferred by executives
 - Intuitively appealing
 - Easy to communicate the value of a project
- If the IRR is high enough, may not need to estimate a required return
- · Considers all cash flows
- · Considers time value of money
- · Provides indication of risk

NPV (\$) 20 15 10 IRR = 13.1% NPV > 05 0 10 25 NPV < 0 -5 -10

NPV vs. IRR

- NPV and IRR will generally give the same decision
- Exceptions

38

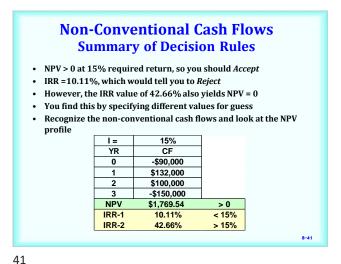
- Non-conventional cash flows
 - · Cash flow sign changes more than once
- Mutually exclusive projects
 - · Initial investments are substantially different
 - · Timing of cash flows is substantially different
 - · Will not reliably rank projects

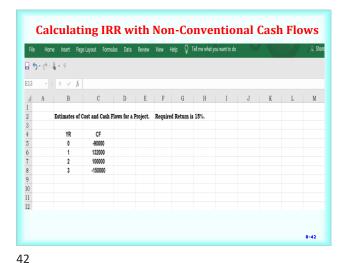
8-38

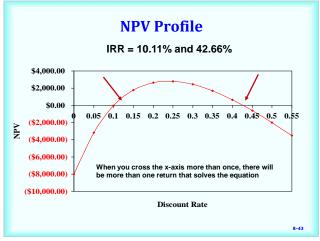
IRR & Non-Conventional Cash Flows

"Non-conventional"

37


- Cash flows change sign more than once
- Most common:
 - Initial cost (negative CF)
 - A stream of positive CFs
 - · Negative cash flow to close project.
 - For example, nuclear power plant or strip mine.
- More than one IRR
- Which one do you use to make your decision?

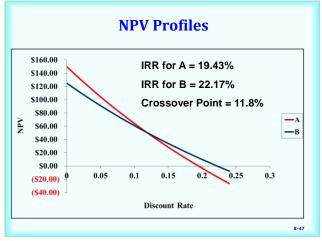

-39

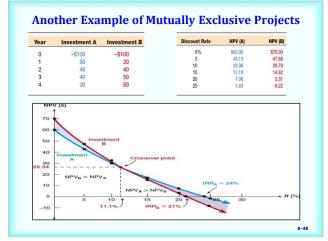

Non-Conventional Cash Flows

- Suppose an investment will cost \$90,000 initially and will generate the following cash flows:
 - Year 1: 132,000
 - Year 2: 100,000
 - Year 3: -150,000
- The required return is 15%.
- · Should we accept or reject the project?

8-40

Independent versus Mutually Exclusive Projects Independent - The cash flows of one project are unaffected by the acceptance of the other. Mutually Exclusive - The acceptance of one project precludes accepting the other.


46


Reinvestment Rate Assumption

- · IRR assumes reinvestment at IRR
- NPV assumes reinvestment at the firm's weighted average cost of capital(opportunity cost of capital)
 - More realistic
 - NPV method is best
- NPV should be used to choose between mutually exclusive projects

Example of Mutually Exclusive Projects The required return Period Project A Project B for both projects is 10%. 0 -500 -400 1 325 325 Which project 2 325 200 should you accept **IRR** 22.17% and why? 19.43% **NPV** 64.05 60.74

45

47 48

Two Reasons NPV Profiles Cross

- Size (scale) differences.
 - Smaller project frees up funds sooner for investment.
 - The higher the opportunity cost, the more valuable these funds, so high discount rate favors small projects.
- Timing differences.
 - Project with faster payback provides more CF in early years for reinvestment.
 - If discount rate is high, early CF especially good

-49

Conflicts Between NPV and IRR

- NPV directly measures the increase in value to the firm
- Whenever there is a conflict between NPV and another decision rule, always use NPV
- IRR is unreliable in the following situations:
 - Non-conventional cash flows
 - Mutually exclusive projects

8-50

49 50

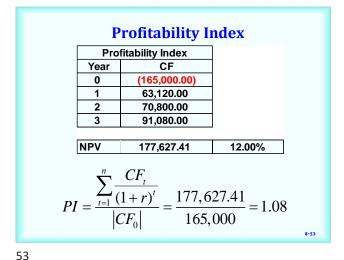
Profitability Index

- Measures the benefit per unit cost, based on the time value of money
 - A profitability index of 1.1 implies that for every \$1 of investment, we create an additional \$0.10 in value
- Can be very useful in situations of capital rationing
- Decision Rule: If $PI > 1.0 \rightarrow Accept$

8-51

Profitability Index

• For conventional CF Projects:


$$PI = \frac{\sum_{t=1}^{n} \frac{CF_t}{(1+r)^t}}{|CF_0|}$$
PV(Cash Inflows)

Absolute Value of Initial Investment

. .

51

54

	7.		
Advantages		Disadvanta	ges
Closely related to leading to identical			o incorrect decisions in comparisons y exclusive investments.
2. Easy to understan	d and communicate.		
0.14			
May be useful who investment funds			
		<u> </u>	В
	are limited.		B (100,000.00)
investment funds	are limited.	0.00)	
investment funds	A (10,00	0.00)	(100,000.00)

Capital Budgeting In Practice

- Consider all investment criteria when making decisions
- NPV and IRR are the most commonly used primary investment criteria
- Payback is a commonly used secondary investment criteria
- All provide valuable information

-55

Summary Calculate ALL -- each has value Method What it measures **Metric** NPV \$\$ → \$ increase in VF Payback \rightarrow Liquidity Years IRR \rightarrow E(R), risk % PΙ \rightarrow If rationed Ratio

55 56

NPV Summary

Net present value =

- Difference between market value (PV of inflows) and cost
- Accept if NPV > 0
- No serious flaws
- Preferred decision criterion

IRR Summary

Internal rate of return =

- Discount rate that makes NPV = 0
- Accept if IRR > required return
- Same decision as NPV with conventional cash flows
- Unreliable with:
 - · Non-conventional cash flows
 - · Mutually exclusive projects
- We have MIRR = better alternative

58

Payback Summary

Payback period =

- Length of time until initial investment is recovered
- Accept if payback < some specified target
- Doesn't account for time value of money
- Ignores cash flows after payback
- Arbitrary cutoff period
- Asks the wrong question

. ..

57

Profitability Index Summary

Profitability Index =

- Benefit-cost ratio
- Accept investment if PI > 1
- Cannot be used to rank mutually exclusive projects
- May be used to rank projects in the presence of capital rationing

-59

Choosing the Optimal Capital Budget

- Finance theory says to accept all positive NPV projects.
- Two problems can occur when there is not enough internally generated cash to fund all positive NPV projects:
 - An increasing marginal cost of capital.
 - Capital rationing

Increasing Marginal Cost of Capital

- Externally raised capital can have large flotation costs, which increase the cost of capital.
- Investors often perceive large capital budgets as being risky, which drives up the cost of capital.
- If external funds will be raised, then the NPV of all projects should be estimated using this higher marginal cost of capital.

8-60

59

International Capital Budgeting

- · Find the PV of the foreign CF's denominated in the foreign currency and discounted by the foreign country's cost of capital
- · Convert the PV of the CF's to the home country's currency multiplying by the spot exchange rate
- · Subtract the parent company's initial cost from the Present values of net cash flows to get the NPV

Amount and Timing of Foreign CF's will depend on

- Differential tax rates
- Legal and political constraints on CF
- Government subsidized loans

62

Summary of Investment Criteria Payback period. The payback period is the length of time until the sum of an investment's cash flows equals its cost. The payback period rule is to take a project if its payback is fess than some cutoff. The payback pe Average accounting return (AAR). The AAR is a measure of accounting profit relative to book value. It is not related to the IRR, but it is similar to the accounting return on assets (ROA) measure in Chapter 3. The AAR rule is to take an investment it its AAR exceeds a benchmark AAR. The AAR is seriously flawed for a variety reasons, and it has little to recommend it.

61

Quick Quiz

- · Consider an investment that costs \$100,000 and has a cash inflow of \$25,000 every year for 5 years. The required return is 9% and required payback is 4 years.
 - What is the payback period?
 - What is the NPV?
 - What is the IRR?
 - Should we accept the project?
- What decision rule should be the primary decision method?
- When is the IRR rule unreliable?

I don't mind having a husband who's a CFA, except when he starts figuring the internal rate of return of a mop.

63 64