

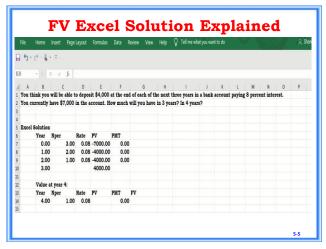
Learning Objectives

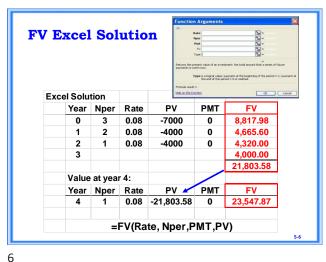
After studying this chapter, you should be able to:

- LO1 Determine the future and present value of investments with multiple cash flows.
- LO2 Calculate loan payments and find the interest rate on a loan.
- LO3 Describe how loans are amortized or paid off.
- LO4 Explain how interest rates are quoted (and misquoted).

. .

-


Future Value: Multiple Cash Flows (1)


- You think you will be able to deposit \$4,000 at the end of each of the next three years in a bank account paying 8 percent interest.
- · You currently have \$7,000 in the account.
- · How much will you have in 3 years?
- · How much in 4 years?

Future Value: Multiple Cash Flows (1)

- Find the value at year 3 of each cash flow and add them together.
 - Year 0: $FV = \$7,000(1.08)^3 = \$8,817.98$
 - Year 1: $FV = \$4,000(1.08)^2 = \$4,665.60$
 - Year 2: FV = \$4,000(1.08)¹ = \$ 4,320.00 - Year 3: value = \$ 4,000.00
 - Total value in 3 years = \$21,803.58
- Value at year 4 = \$21,803.58(1.08) = \$23,547.87

5-4

5

Future Value: Multiple Cash Flows (2) If you deposit \$100 in one year, \$200 in two years and \$300 in three years. · How much will you have in three years at 7 percent interest? TIMELINE -\$100.00 -\$200.00 -\$300.00 \$300.00 200*(1.07) = \$214.00 100*(1.07)^2 = \$114.49 \$628.49 Total interest = \$628.49-600=28.49 * (1.07)^2 = \$719.56

Future Value: Multiple Cash Flows (2)

• If you deposit \$100 in one year, \$200 in two years and \$300 in three years.

• How much will you have in three years at 7 percent interest?

• How much in five years if you don't add additional amounts?

- Year 1 CF: 2 N; -100 PV; 7 I/Y; CPT FV = 114.49

- Year 2 CF: 1 N; -200 PV; 7 I/Y; CPT FV = 214.00

- Year 3 CF: 0 N; -300 PV; 7 I/Y; CPT FV = 300.00

- Total FV₃

- Total FV₅ = 628.49 * (1.07)²

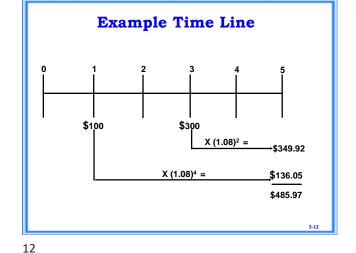
= 719.56

7

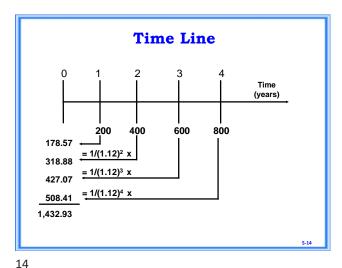
10

Future Value: Multiple Cash Flows (2) **Excel Solution** Rate 7% Year Nper CF F۷ **Function** =FV(0.07,2,0,-100) 2 -100 \$114.49 2 -200 \$214.00 =FV(0.07,1,0,-200) 0 -300 \$300.00 =FV(0.07,0,0,-300) Total FV at Year 3 \$628.49 Total FV at Year 5 \$719.56 =(628.49)*(1.07)^2

Future Value: Multiple Cash Flows (3) • Suppose you invest \$500 in a mutual fund today and \$600 in one year. • If the fund pays 9% annually, how much will you have in two years? FV = \$500 x (1.09) = \$594.05 + \$600 x (1.09) = \$654.00 - \$1048.05							
= \$1,248.05 • How much will you have in 5 years if you make no further deposits? FV = \$500(1.09) ⁵ + \$600(1.09) ⁴ = \$1,616.26 • Second way – use value at year 2: • FV = \$1,248.05(1.09) ³ = \$1,616.26							
Fund Calution	Yea	ar	Nper	Rate	PV	PMT	FV
Excel Solution	0		2	0.09	-500	0	= 594.05
	1 1 0.09 -600 0 = 654.00						
=1,248.05							
=FV(Rate, Nper,PMT,PV)							
	Year	N.	lper -	Rate	PV	PMT	FV
	5		3	0.09	-1,248.05	0	=1,616.26

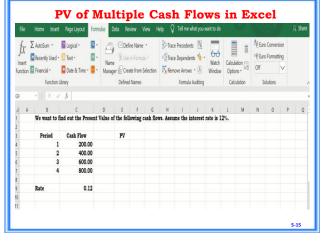

9

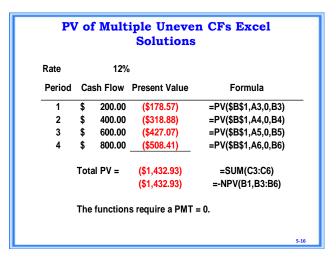
Future Value: Multiple Cash Flows Another Example - Formula


- Suppose you plan to deposit \$100 into an account in one year and \$300 into the account in three years.
- How much will be in the account in five years if the interest rate is 8%?

$$FV = $100(1.08)^4 + $300(1.08)^2 = $136.05 + $349.92 = $485.97$$

5-11


Present Value: Multiple Cash Flows You will receive various amounts of money over the next four year as shown below. Assume the discount rate is 12%. What is the Present Value today? Find the PV of each cash flow and add them: - Year 1 CF: \$200 / (1.12)¹ = \$ 178.57 - Year 2 CF: \$400 / (1.12)² = \$ 318.88 - Year 3 CF: \$600 / (1.12)³ = \$ 427.07 - Year 4 CF: \$800 / (1.12)⁴ = \$ 508.41



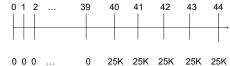
- Total PV

13

= \$1,432.93

Present Value: Multiple Cash Flows Another Example - Formula Solution

- · You are considering an investment that will pay you \$1,000 in one year, \$2,000 in two years and \$3,000 in three years.
- If you want to earn 10% on your money, how much would you be willing to pay?
 - = \$ 909.09 • $PV = \$1,000 / (1.1)^1$
 - $PV = $2,000 / (1.1)^2$ = \$1.652.89
 - $PV = $3,000 / (1.1)^3$ <u>= \$2,253.</u>94
 - = \$4,815.92


17

Saving For Retirement

You are offered the opportunity to put some money away for retirement. You will receive five annual payments of \$25,000 each beginning in 40 years. How much would you be willing to invest today if you desire an interest rate of 12%?

Timeline

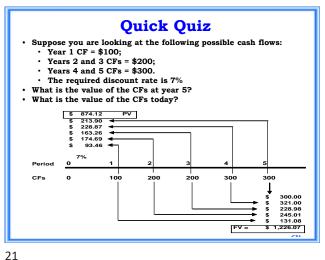
Notice that the year 0 cash flow = 0 ($CF_0 = 0$)

Cash flows years 1-39 = 0 Cash flows years 40-44 = 25,000

Show the answer is \$1,084.71

Decisions, **Decisions**

- Your broker calls you and tells you that he has this great investment opportunity.
- If you invest \$100 today, you will receive \$40 in one year and \$75 in two years.
- If you require a 15% return on investments of this risk, should you take the investment?

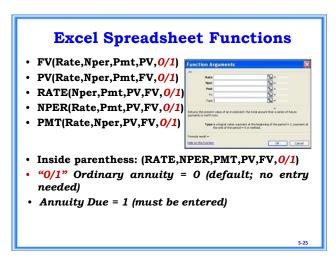

Use Formula PV(Rate, Nper, Pmt, FV)

PV = PV(0.15, 1, 0, 40) = \$34.78

+ PV = PV(0.15, 2, 0, 75) = \$56.71

Don't take the investment - broker is charging more than you would be willing to pay.

22


Quick Quiz - Excel Solution				
	Rate	7%		
Year	Nper	CF	PV	Formula
1	1	100	\$93.46	=-PV(\$C\$2,A4,0,C4)
2	2	200	\$174.69	=-PV(\$C\$2,A5,0,C5)
3	3	200	\$163.26	=-PV(\$C\$2,A6,0,C6)
4	4	300	\$228.87	=-PV(\$C\$2,A7,0,C7)
5	5	300	\$213.90	=-PV(\$C\$2,A8,0,C8)
		Total PV	\$874.17	=SUM(C4:C8)
Year	Nper	CF	FV	Year
1	4	100	\$131.08	=-FV(\$C\$2,B12,0,C12)
2	3	200	\$245.01	=-FV(\$C\$2,B13,0,C13)
3	2	200	\$228.98	=-FV(\$C\$2,B14,0,C14)
4	1	300	\$321.00	=-FV(\$C\$2,B15,0,C15)
5	0	300	\$300.00	=-FV(\$C\$2,B16,0,C16)
		Total FV	\$1,226.07	=SUM(C12:C16)
				5-:

Annuities and Perpetuities

- · Annuity finite series of equal payments that occur at regular intervals
 - If the first payment occurs at the end of the period, it is called an ordinary annuity
 - If the first payment occurs at the beginning of the period, it is called an annuity due
- Perpetuity infinite series of equal payments.

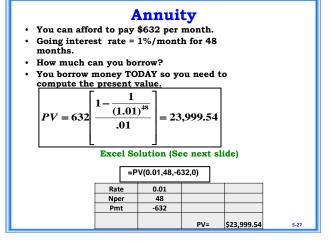
Annuities and Perpetuities Basic Formulas • Perpetuity: PV = PMT / r Annuities: **Derivation of Annuity Formula** http://www.ftsmodules.com/public/texts/bondtutor/appendix1a.htm

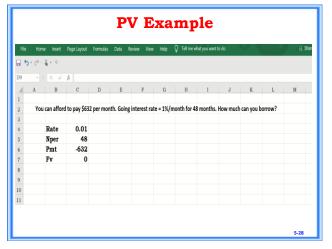
26

Important Points to Remember

• Interest rate and time period must match!

- Annual periods ⇒ annual rate


- Monthly periods ⇒ monthly rate


• The Sign Convention

- Cash inflows are positive

- Cash outflows are negative

25

27 28

Annuity - Sweepstakes Example

- Suppose you win the Publishers Clearinghouse \$10 million sweepstakes.
- The money is paid in equal annual installments of \$333,333.33 over 30 years.
- If the appropriate discount rate is 5%, how much is the sweepstakes actually worth today?
 - PV = \$333,333.33[1 1/1.05³⁰] / .05 = \$5,124,150.29

Excel Solution

=PV(5, 30, 3333333.33, 0)

Rate	0.05		
Nper	30		
Pmt	-333,333.33		
Type	0		
		PV =	\$5,124,150.29

5-29

Buying a House

- You are ready to buy a house and you have \$20,000 for a down payment and closing costs.
- Closing costs are estimated to be 4% of the loan value.
- You have an annual salary of \$36,000.
- The bank is willing to allow your monthly mortgage payment to be equal to 28% of your monthly income.
- The interest rate on the loan is 6% per year with monthly compounding (.5% per month) for a 30year fixed rate loan.
- · How much money will the bank loan you?
- · How much can you offer for the house?

5-30

29 30

Buying a House

- · Bank loan
 - Monthly income = 36,000 / 12 = 3,000
 - Maximum payment = .28(3,000) = 840

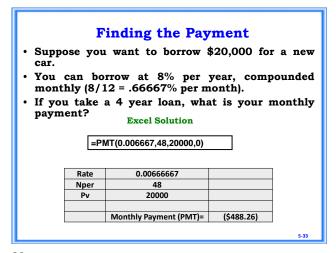
Excel Solution

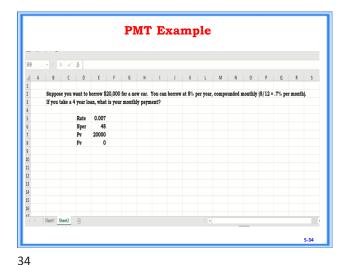
=PV(.005,360,-840,0)

Rate	.06/12	0.005		
Nper	12*30	360		
Pmt	-840	-840.00		
			Loan (PV)=	\$140,104.96

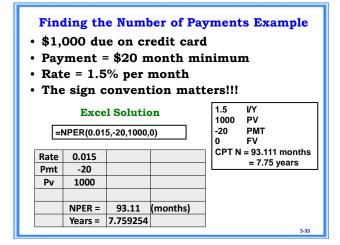
- Total Price
 - Closing costs = .04(140,105) = 5,604
 - Down payment = 20,000 5604 = 14,396
 - Total Price = 140,105 + 14,396 = 154,501

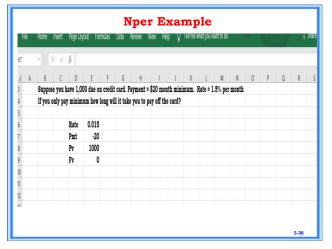
Quick Quiz

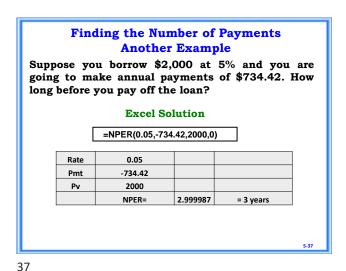

- You know the payment amount for a loan and you want to know how much was borrowed.
 - Do you compute a present value or a future value?
- Example You want to receive \$5,000 per month in retirement. If you can earn .75% per month and you expect to need the income for 25 years, how much do you need to have in your account at retirement?

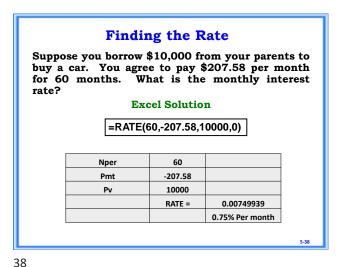

= -595,808.11

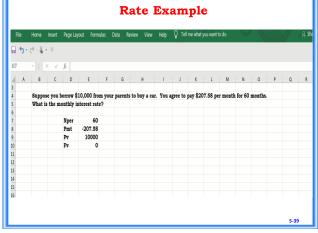
Excel Solution

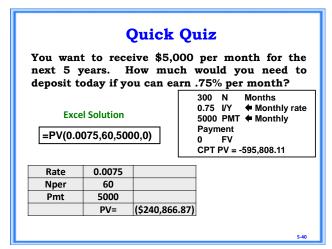

0,00,0	,00.11			
		=PV(0.0075,300,5000,0)		
Rate	0.0075			
Nper	300			
Pmt	5000			
			Amount Needed (PV)	(\$595,808.11)

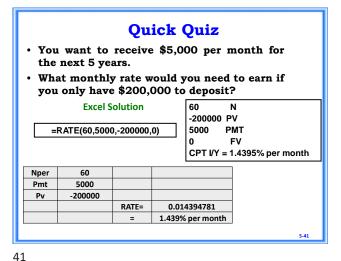

31 32

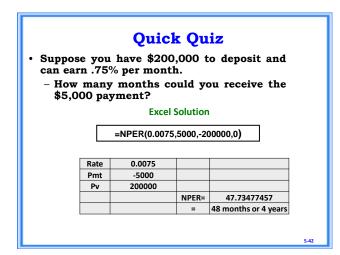


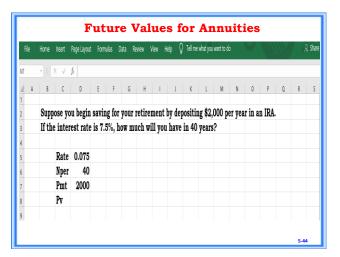

33






35 36





Future Values for Annuities

Suppose you begin saving for your retirement by depositing \$2,000 per year in an IRA. If the interest rate is 7.5%, how much will you have in 40 years?

$$FV = PMT \left[\frac{(1+r)^t - 1}{r} \right]$$

$$FV = 2000 \left[\frac{(1.075)^{40} - 1}{.075} \right] = 454,513.04$$

43

46

Annuity Due

You are saving for a new house and you put \$10,000 per year in an account paying 8%. The first payment is made today. How much will you have at the end of 3 years?

$$FV_{AD} = PMT \left[\frac{(1+r)^t - 1}{r} \right] (1+r)$$

$$FV_{AD} = 10000 \left[\frac{(1.08)^3 - 1}{.08} \right] (1.08) = 35,061.12$$

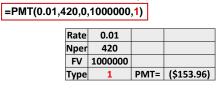
45

Quick Quiz

You want to have \$1 million to use for retirement in 35 years. If you can earn 1% per month, how much do you need to deposit on a monthly basis if the first payment is made in one month?

Ordinary Annuity

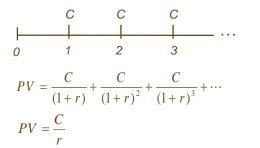
Excel Solution =PMT(0.01,420,0,1000000)


Rate	0.01		
Nper	420		
FV	1000000		
Type	0	PMT=	(\$155.50

Quick Quiz

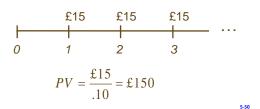
You want to have \$1 million to use for retirement in 35 years. If you can earn 1% per month, how much do you need to deposit on a monthly basis if the first payment is made today?

Annuity Due


Excel Solution

47 48

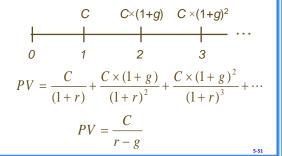
Perpetuity


A constant stream of cash flows that lasts forever

Perpetuity: Example

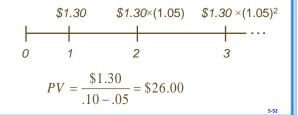
What is the value of a British consol that promises to pay £15 every year for ever?

The interest rate is 10-percent.



49

50


Growing Perpetuity

A growing stream of cash flows that lasts forever

Growing Perpetuity: Example

- The expected dividend next year is \$1.30, and dividends are expected to grow at 5% forever.
- If the discount rate is 10%, what is the value of this promised dividend stream?

51

Interest Rates

- Effective Annual Rate (EAR)
 - The interest rate expressed as if it were compounded once per year.
 - Used to compare two alternative investments with different compounding periods
- · Annual Percentage Rate (APR) "Nominal"
 - The annual rate quoted by law
 - APR = periodic rate X number of periods per year
 - Periodic rate = APR / periods per year

5-53

54

Things to Remember

- You ALWAYS need to make sure that the <u>interest rate and the time period</u> match.
 - Annual periods → annual rate.
 - Monthly periods monthly rate.
- If you have an APR based on monthly compounding, you have to use monthly periods for lump sums or adjust the interest rate accordingly.

-54

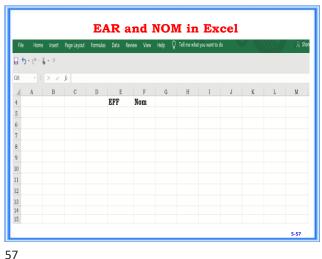
53

EAR Formula

$$EAR = \left\lceil 1 + \frac{APR}{m} \right\rceil^{m} - 1$$

APR = the quoted rate m = number of compounds per year

5-55


EAR and **NOM** in Excel

• 2 Functions:

=EFFECT(Nom, Nper) =NOMINAL(Eff, Nper)

- Note Nominal is the same as APR
- All rates entered as decimals
- Nper = number of compounding periods per year

5-56

Decisions, Decisions

- · Which savings accounts should you choose:
 - 5.25% with daily compounding.
 - 5.30% with semiannual compounding.
- First account:
 - EAR = $(1 + .0525/365)^{365} 1 = 5.39\%$
 - Excel: =EFFECT(0.525,365) = 5.39%
- · Second account:

58

- EAR = $(1 + .053/2)^2 1$ = 5.37%
- Excel: =EFFECT(0.53,2)

= 5.37%

Computing APRs • What is the APR if the monthly rate is .5%? -.5%(12) = 6%• What is the APR if the semiannual rate is .5%? -.5%(2) = 1%• What is the monthly rate if the APR is 12% with monthly compounding? **12% / 12 = 1%** 1000

Computing EAR and APR • Suppose you can earn 1% per month on \$1 invested today. - What is the APR? 1(12) = 12%- How much are you effectively earning? • $FV = 1(1.01)^{12} = 1.1268$ • Rate = (1.1268 - 1) / 1 = .1268 = 12.68% **Excel Solution** EFFECT(0.12,12) Nominal rate EFFECT= 0.12682503

59

Computing EAR and APR

- Suppose if you put it in another account, you earn 3% per quarter.
 - What is the APR? 3(4) = 12%
 - How much are you effectively earning?
 - $FV = 1(1.03)^4 = 1.1255$

61

• Rate = (1.1255 - 1) / 1 = .1255 = 12.55%

Excel Solution

=EFFECT(0.12,4)

Nominal rate	.12		
Npery	4		
		EFFECT=	0.125509

62

Frequency of Compounding

General Formula:

$$FV_{t} = PV_{0}(1 + \frac{r}{m})^{mt}$$

t: Number of Years

m: Compounding Periods per Year

r: Annual Interest Rate or APR

FV_t: FV at the end of Year t

PV₀: PV of the Cash Flow today

Impact of Frequency

Ms. H has \$1,000 to invest for 2 years at an annual interest rate of 12%.

Annual $FV_2 = 1,000(1 + [.12/1])^{(1)(2)} = 1,254.40$

Semi $FV_2 = 1,000(1 + [.12/2])^{(2)(2)} = 1,262.48$

Quarterly $FV_2 = 1,000(1+[.12/4])^{(4)(2)} = 1,266.77$

Monthly $FV_2 = 1,000(1 + [.12/12])^{(12)(2)} = 1,269.73$

Daily $FV_2 = 1,000(1+[.12/365])^{(365)(2)} = 1,271.20$

Continuous Compounding

Continuous compounding implies $m \to \infty$

If -- r = interest rate per period (one year)
 m = number of periods per year
 t = number of years

 $FV_t = PV_0 (1 + r/m)^{mt} = PV_0 (1 + 1/(m/r))^{mt}$

=
$$PV_0 [\{1 + 1/(m/r)\}^{m/r}]^{rt}$$

 $FV_t = PV_0 [{1 + 1/(m/r)}^{m/r}]^{rt}$

63

Solving the Equation

By definition $(1 + 1/n)^n$ as $n \to \infty$ is equal to e = 2.7182...

If interest is compounded continuously or $m \to \infty$,

$${1 + 1(m/r)}^{m/r} = e$$
 Thus, $FV_t = PV(e)^{rt}$

Example: PV = 10000 r = 10% t = 5

 $FV = 10000(e)^{.10(5)} = 10000 e^{0.5} = 10000 (1.6487) = 16487$

Finding PV: PV = FV/ (e)rt

If you want to have 200,000 at retirement 10 years from now and you can invest at 10% interest, how much should you invest today?

 $PV = 200,000/ (e)^{.10(10)} = 200000/e = 73578$

5-65

66

Computing APRs from EARs

$$APR = m \left[(1 + EAR)^{\frac{1}{m}} - 1 \right]$$

M = number of compounding periods per year

Suppose you want to earn an effective rate of 12% and you are looking at an account that compounds on a monthly basis. What APR must they pay?

$$APR = 12[(1+.12)^{1/12}-1]=.1138655$$
 or 11.39%
Excel Solution

=NOMINAL(0.12,12)

Effect rate	0.12	
Npery	12	
	NOMINAL=	0.113865515

. . . .

Computing Payments with APRs

- · Suppose you want to buy a new computer.
- The store is willing to allow you to make monthly payments.
- The entire computer system costs \$3,500.
- · The loan period is for 2 years.
- The interest rate is 16.9% with monthly compounding.
- · What is your monthly payment?

=PMT(0.0140833,24,3500,0)

Excel Solution

Rate	.169/12	
Nper	24	
PV	3500	
	PMT	(\$172.88)

5-67

Future Values with Monthly Compounding

Suppose you deposit \$50 a month into an account that has an APR of 9%, based on monthly compounding. How much will you have in the account in 35 years?

Excel Solution

=FV(0.0075,420,-50,0)

Rate	.09/12		
Nper	420		
Pmt	-50		
		FV =	\$147,091.51

5-68

67

Present Value with Daily Compounding

You need \$15,000 in 3 years for a new car. If you can deposit money into an account that pays an APR of 5.5% based on daily compounding, how much would you need to deposit?

Excel Solution

PV(0.00015,1095,0,15000)

Rate	.055/365		
Nper	1095		
FV	15000		
		PV =	(\$12,718.56)

F 60

Pure Discount Loans

- Treasury bills are excellent examples of pure discount loans.
 - Principal amount is repaid at some future date
 - No periodic interest payments
- If a T-bill promises to repay \$10,000 in 12 months and the market interest rate is 7 percent, how much will the bill sell for in the market?

LACEI SOIGIOII

PV(.07,1,0,10000)

Rate	0.07		
Nper	1		
FV	10000		
		PV=	(\$9,345.79)

69

70

Amortized Loan with Fixed Payment Example

- Each payment covers the interest expense plus reduces principal
- Consider a 4-year loan with annual payments. The interest rate is 8% and the principal amount is \$5000.
 - What is the annual payment?

Excel Solution

= PMT(0.08,4,5000,0) = 1509.60

Rate	0.08		
Nper	4		
Pv	5000		
		PMT	(\$1,509.60)

5-71

Amortized Loan with Fixed Payment - Example

	В	eginning	Tota	al Payment		Interest	Р	rincipal	Е	nding
Year	Balance		Payment		Paid		Paid		Balance	
1	\$	5,000.00	\$	1,509.60	\$	400.00	\$	1,109.60	\$	3,890.40
2	\$	3,890.40	\$	1,509.60	\$	311.23	\$	1,198.37	\$	2,692.03
3	\$	2,692.03	\$	1,509.60	\$	215.36	\$	1,294.24	\$	1,397.79
4	\$	1,397.79	\$	1,509.60	\$	111.82	\$	1,397.79	\$	-
Totals			\$	6,038.40	\$	1,038.42	\$	5,000.00		

Interest Paid = Beginning Balance * Rate (8%)
Principal Paid = Total Payment – Interest Paid
Ending Balance = Beginning Balance – Principal Paid

5-72