Equations to know for Quizzes and Exam (Chapters 1 to 9)

$$\overline{\overline{x}} \equiv \frac{\sum_{x_i} x_i}{n}$$

Sample Standard Deviation
$$\sqrt{s^2} = s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

Coefficient of Variation

$$\frac{s}{\overline{\overline{x}}}$$
 * (100)%

Probability

Addition Rule If
$$A \cap B \neq 0$$
 $p(A \cup B) = p(A) + p(B) - p(A \cap B)$

Multiplication Rule Independent Events $p(A \cap B) = p(A) \cdot p(B)$

$$p(A \cap B) = p(A) \cdot p(B)$$

Dependent Events

$$p(A \cap B) = p(A) \cdot p(B|A)$$

Conditional Probability

$$P(A|B) = \frac{p(A \cap B)}{p(B)}$$

Bayes' theorem: P(A|B) = [P(B|A) * P(A)] / P(B), where P(A|B) is the probability of event A given event B has occurred.

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

Know how to construct a joint probability table.

Expected Value
$$E(X) = x_1p_1 + x_2p_2 + x_3p_3 + ... + x_np_n$$
.

Variance The variance summarizes the variability in the values of a random variable.

$$Var(x) = \sigma^2 = \Sigma(x - \mu)^2 f(x)$$

Binomial probability distribution:

$$P(x) = \frac{n!}{x! (n-x)!} p^{x} (1-p)^{n-x} \text{ for } x = 1, 2, \dots, n$$

Know how to read a binomial table.

Mean, variance, and standard deviation of a binomial random variable:

$$\mu = np$$

$$\sigma^2 = np(1-p)$$

$$\sigma = \sqrt{np(1-p)}$$

The probability that a Poisson random variable assumes a value of x in a specific interval is:

$$P(x) = \frac{e^{-\mu}\mu^x}{x!}$$
 for $x = 0, 1, 2, ...$

Know how to read a Poisson Table.

Uniform Probability Distribution

$$f(x) = 1/(b-a) \quad \text{for } a \le x \le b$$

where: a = smallest value the variable can

Standard deviation or Standard error of the mean (standard deviation known)

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{N}}$$

Standard deviation or Standard error of the mean (standard deviation unknown - sample)

$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Z-Score for a Single Value	Z-Score for a Sample Mean σ known
$z = \frac{(x - \mu)}{\sigma}$	$z = \frac{(\overline{x} - \mu)}{\frac{\sigma}{\sqrt{n}}}$

Sample Standard error for proportions

$$\sigma_{\bar{p}} = \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$